Package: freebird (via r-universe)

September 10, 2024

Title Estimation and Inference for High Dimensional Mediation and Surrogate Analysis

Version 1.0

Description Estimates and provides inference for quantities that assess high dimensional mediation and potential surrogate markers including the direct effect of treatment, indirect effect of treatment, and the proportion of treatment effect explained by a surrogate/mediator; details are described in Zhou et al (2022) <doi:10.1002/sim.9352> and Zhou et al (2020) <doi:10.1093/biomet/asaa016>. This package relies on the optimization software 'MOSEK', <https://www.mosek.com>.

Depends R (>= 3.5.0), scalreg, Rmosek, Matrix

Imports stats, MASS

License GPL (≥ 2)

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation yes

Author Ruixuan Zhou [aut, cph], Dave Zhao [aut, cph], Layla Parast [cre]

Maintainer Layla Parast <parast@austin.utexas.edu>

Date/Publication 2022-09-27 10:20:05 UTC

Repository https://laylaparast.r-universe.dev

RemoteUrl https://github.com/cran/freebird

RemoteRef HEAD

RemoteSha 500717a2e0f96dfea168c96f417a35a40a3a0870

Contents

hilma						•	•	•		•	•	•	•				•	•	•	•	•	•	•		•	•	•	•	•	•	•		2
ptehd																																	

5

Index

hilma

Description

This function implements the estimation and inference for the indirect effect in high dimensional linear mediation analysis models. It provides estimates and p-values under both incomplete mediation, where a direct effect may exist, as well as complete mediation, where the direct effect is known to be absent.

Usage

```
hilma(
    Y,
    G,
    S,
    mediation_setting = "incomplete",
    tuning_method = "uniform",
    lam_list = NA,
    min.ratio = 0.1,
    n.lambda = 5,
    center = TRUE
)
```

Arguments

Υ	The n-dimensional outcome vector.
G	The n by p mediator matrix. p can be larger than n.
S	The n by q exposure matrix. q can be 1, and $q < n$ is required.
<pre>mediation_setti</pre>	ing
	Either 'incomplete' or 'complete'
tuning_method	'uniform' or 'aic', the default is 'uniform'
lam_list	tuning parameter for uniform tuning or list of tuning parameter for aic tuning
min.ratio	the ratio of the minimum lambda to the maximum
n.lambda	number of tuning parameters to choose from
center	center the data or not, the default is TRUE

Value

A list with components:

beta_hat	estimated indirect effect
alpha1_hat	estimated direct effect
<pre>pvalue_beta_hat</pre>	
	the p value for testing the significance of the indirect effect
lambda_used	lambda used during optimization

ptehd

Author(s)

Ruixuan Zhou

Examples

```
n = 30
p = 50
q = 2
G = MASS::mvrnorm(n, rep(0,p), diag(p))
S = as.matrix(MASS::mvrnorm(n, rep(0,q), diag(q)))
Y = as.matrix(rnorm(n))
out = hilma(Y,G,S, mediation_setting = 'complete', tuning_method = 'uniform', lam_list = 0.2)
out
```

nt	ohd
ρι	enu

Proportion of treatment effect explained by high-dimensional surrogates

Description

Estimates the proportion of the treatment effect explained by the indirect effect via high-dimensional surrogates.

Usage

```
ptehd(Yt, Yc, St, Sc, lambda_range = c(0, 1))
```

Arguments

Yt	The n-dmensional outcome vector in the treatment group.
Yc	The n-dmensional outcome vector in the control group.
St	The n x p matrix of surrogates in the treatment group.
Sc	The n x p matrix of surrogates in the treatment group.
lambda_range	Min and max of range of range of tuning parameter to use during the constrained 11 optimization step.

Value

A list with components:

est_id	Estimate of indirect effect, defined as $\int E(Y S = s, Z = 1)dF(s Z = 1) - \int E(Y S = s, Z = 0)dF(s Z = 0)$
sd_id	Standard deviation of indirect effect estimate
est_total	Estimate of total effect
sd_total	Standard deviation of total effect estimate
V	Covariance matrix of (est_id, est_total)

ptehd

est_R	Estimate of proportion of treatment effect explained by surrogates
sd_R	Standard deviation of proportion estimate
lambda_used	lambda used during optimization

Author(s)

Ruixuan Zhou

Examples

```
n = 10
St = replicate(n, rnorm(20, mean = 1))
Sc = replicate(n, rnorm(20))
Yt = 1 + rowSums(St) / 2 + rnorm(n)
Yc = rowSums(Sc) / 3 + rnorm(n)
# Requires installation of mosek to run
## Not run:
out = ptehd(Yt, Yc, St, Sc)
```

End(Not run)

Index

hilma,<mark>2</mark>

ptehd, 3