Package: SBdecomp 1.2
SBdecomp: Estimation of the Proportion of SB Explained by Confounders
Uses parametric and nonparametric methods to quantify the proportion of the estimated selection bias (SB) explained by each observed confounder when estimating propensity score weighted treatment effects. Parast, L and Griffin, BA (2020). "Quantifying the Bias due to Observed Individual Confounders in Causal Treatment Effect Estimates". Statistics in Medicine, 39(18): 2447- 2476 <doi:10.1002/sim.8549>.
Authors:
SBdecomp_1.2.tar.gz
SBdecomp_1.2.zip(r-4.5)SBdecomp_1.2.zip(r-4.4)SBdecomp_1.2.zip(r-4.3)
SBdecomp_1.2.tgz(r-4.4-any)SBdecomp_1.2.tgz(r-4.3-any)
SBdecomp_1.2.tar.gz(r-4.5-noble)SBdecomp_1.2.tar.gz(r-4.4-noble)
SBdecomp_1.2.tgz(r-4.4-emscripten)SBdecomp_1.2.tgz(r-4.3-emscripten)
SBdecomp.pdf |SBdecomp.html✨
SBdecomp/json (API)
# Install 'SBdecomp' in R: |
install.packages('SBdecomp', repos = c('https://laylaparast.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/laylaparast/sbdecomp/issues
- petsdata - Dog ownership dataset
Last updated 3 years agofrom:4d6422cb32. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
R-4.4-win | OK | Nov 05 2024 |
R-4.4-mac | OK | Nov 05 2024 |
R-4.3-win | OK | Nov 05 2024 |
R-4.3-mac | OK | Nov 05 2024 |
Exports:bar.sbdecompKern.FUNpred.smoothsbdecompVTM
Dependencies:clicolorspacedata.tableDBIdeldirfansifarvergbmggplot2gluegtableinterpisobandjpegjsonlitelabelinglatticelatticeExtralifecyclemagrittrMASSMatrixMatrixModelsmgcvminqamitoolsmunsellnlmenumDerivpillarpkgconfigpngR6RColorBrewerRcppRcppArmadilloRcppEigenrlangscalessurveysurvivaltibbletwangutf8vctrsviridisLitewithrxgboostxtable
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Estimation of the Proportion of SB Explained by Confounders | SBdecomp-package |
Creates a Bar Plot | bar.sbdecomp |
Dog ownership dataset | petsdata |
Selection Bias Decomposition | sbdecomp |