Package: OptimalSurrogate 1.0

OptimalSurrogate: Model Free Approach to Quantifying Surrogacy

Identifies an optimal transformation of a surrogate marker such that the proportion of treatment effect explained can be inferred based on the transformation of the surrogate and nonparametrically estimates two model-free quantities of this proportion. Details are described in Wang et al (2020) <doi:10.1093/biomet/asz065>.

Authors:Xuan Wang [aut], Layla Parast [aut, cre], Ming Yang [aut], Lu Tian [aut], Tianxi Cai [aut]

OptimalSurrogate_1.0.tar.gz
OptimalSurrogate_1.0.zip(r-4.5)OptimalSurrogate_1.0.zip(r-4.4)OptimalSurrogate_1.0.zip(r-4.3)
OptimalSurrogate_1.0.tgz(r-4.4-any)OptimalSurrogate_1.0.tgz(r-4.3-any)
OptimalSurrogate_1.0.tar.gz(r-4.5-noble)OptimalSurrogate_1.0.tar.gz(r-4.4-noble)
OptimalSurrogate_1.0.tgz(r-4.4-emscripten)OptimalSurrogate_1.0.tgz(r-4.3-emscripten)
OptimalSurrogate.pdf |OptimalSurrogate.html
OptimalSurrogate/json (API)

# Install 'OptimalSurrogate' in R:
install.packages('OptimalSurrogate', repos = c('https://laylaparast.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • marker_cont - Simulated data with continuous surrogate marker
  • marker_disc - Simulated data with discrete surrogate marker

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 154 downloads 2 exports 1 dependencies

Last updated 2 years agofrom:ccba9306a4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-winOKNov 16 2024
R-4.5-linuxOKNov 16 2024
R-4.4-winOKNov 16 2024
R-4.4-macOKNov 16 2024
R-4.3-winOKNov 16 2024
R-4.3-macOKNov 16 2024

Exports:pte_contpte_disc

Dependencies:MASS