Title: | Calibrated Model Fusion Approach to Combine Surrogate Markers |
---|---|
Description: | Uses a calibrated model fusion approach to optimally combine multiple surrogate markers. Specifically, two initial estimates of optimal composite scores of the markers are obtained; the optimal calibrated combination of the two estimated scores is then constructed which ensures both validity of the final combined score and optimality with respect to the proportion of treatment effect explained (PTE) by the final combined score. The primary function, pte.estimate.multiple(), estimates the PTE of the identified combination of multiple surrogate markers. Details are described in Wang et al (2022) <doi:10.1111/biom.13677>. |
Authors: | Xuan Wang [aut], Layla Parast [cre] |
Maintainer: | Layla Parast <[email protected]> |
License: | GPL |
Version: | 1.0 |
Built: | 2025-02-14 02:39:13 UTC |
Source: | https://github.com/cran/CMFsurrogate |
Example data
data("example.data")
data("example.data")
A list with 3 elements:
sob
the surrogate markers
yob
the primary outcome
aob
the treatment indicator
data(example.data) names(example.data)
data(example.data) names(example.data)
Generate bootstrap sample
gen.bootstrap.weights(n, num.perturb = 500)
gen.bootstrap.weights(n, num.perturb = 500)
n |
sample size |
num.perturb |
number of replicates/resamples |
matrix with n rows and num.perturb columns of indeces
Estimates the proportion of treatment effect explained by the optimal combination of multiple surrogate markers using a calibrated model fusion approach
pte.estimate.multiple(sob, yob, aob, var = TRUE, rep = 500)
pte.estimate.multiple(sob, yob, aob, var = TRUE, rep = 500)
sob |
surrogates |
yob |
primary outcome, y |
aob |
treatment indicator |
var |
TRUE or FALSE, if variance/SE of PTE is being requested |
rep |
if var is TRUE, number of resampled draws to use for bootstrap |
pte.es |
Estimate of the proportion of treatment effect explained (PTE) |
pte.se |
if var = TRUE, estimate of the standard error of the PTE |
Wang, X., Parast, L., Han, L., Tian, L., & Cai, T. (2022). Robust approach to combining multiple markers to improve surrogacy. Biometrics, In press.
data(example.data) out=pte.estimate.multiple(sob=example.data$sob, yob=example.data$yob, aob=example.data$aob, var = FALSE) out
data(example.data) out=pte.estimate.multiple(sob=example.data$sob, yob=example.data$yob, aob=example.data$aob, var = FALSE) out
Estimates quantities using resampled data
resam(index, yob, sob, aob, n)
resam(index, yob, sob, aob, n)
index |
index |
yob |
y |
sob |
surrogates |
aob |
treatment |
n |
n |
Outputs parametric estimate, additive linear estimate, and convex combination estimate